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1. INTRODUCTION AND SUMMARY

Throughout this paper P2k + I denotes the monic polynomial P2k " 1(x) =

x(x 2
- C,( d (x 2

- C,(k), where C,( 1""'C,(k are real numbers such that
0~C,(1 ~ ~C,(k' The linear differential operator having P2k t 1 as its
characteristic polynimial is denoted by 2) 2k + I' i.e., !f' 2k 1 1(D) = P2k + I (D),
where D is the ordinary first-order differentiation operator.

A complex-valued function s is called a cardinal !f'-spine with respect to
f£ 2k + I if it satisfies the conditions

(i) SE el2k 11(1R),

(ii) !f' 2k + 1s(t) = ° (v < I < v + I, v = 0, ± I, ±2, ... ).
( 1.1 )

The set of cardinal !f'-splines with respect to !f' 2k + 1 is denoted by S 2k t l'

Obviously, S2k + 1 depends on C,( 1, ••• , C,(k; this, however, is suppressed in our
notation. The following interpolation property holds.

LEMMA 1.1 (Michelli [4]). Let (y \)', he a hounded sequence 0/ com­
plex numbers. Then a unique hounded function s E S2k + I exists such Ihal

s(v +~) = y, (v=o, ±I, ±2,... ). ( 1.2)

The boundedness of the interpolant s in Lemma 1.1 is required to ensure
the unicity of s.

Let <~k + I be the linear operator mapping the set of bounded sequences
Y= (Y,): x onto the set of bounded functions in S2k t 1 by way of inter­
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(1.3)

polation according to (1.2). The purpose of this paper IS to study the
asymptotic behaviour of the operator norm

II (I) II - _IIY---,,~2--.:...k+_I,-,-Y_II---,-x
·7)k + I - sup

- pHI IIYII,

as k ---+x.
Taking in particular the sequence (y,.) = (6,.,0) in (1.2) we obtain the so­

called fundamental solution L n + I of the interpolation problem. In Schoen­
berg [8J it is shown that IL 2k + I (t)I<Ae '111 (tEIR) for appropriate
positive constants A and :t. Hence, for any bounded sequence Y= (y,.) > J'

the corresponding bounded interpolant Y'2k + I Y may be written in the form

I.

Y~k+ly(t)= I y,.L 2k + I (t-I')
\' = I

(-x <t< 'x). (1.4 )

It immediately follows from 1.4 that

IIY~k + 111:( sup [2k + l(t),
IE R

where
~

[ 2k + I (t ) = I IL 2k + I (t - I' ) I ( 1.5)

is the Lebesgue function associated with the given cardinal interpolation
problem.

In Section 3 it is proved that on [-~, ~J the function [2k + I coincides
with the cardinal !fJ-spline

where

f_

[2k + I (t) = I 5\. L 2k + I (t - I' ) (-c£ < t< x), (1.6 )

)\=(-I}'

=(_1)'1 I

(1'=0, 1,2,... ),

(1'= -I, -2, ... ). (1.7 )

We also show that

IIY~k+111 =[2k+I(0). (1.8)

In view of this operator norm IIY:;k + III (ef. (1.3)) is also called the Lebesgue
constant for the interpolation problem. Our study of the asymptotic
behaviour of 1I''!:;k + III (k ---+ 'x) is based on an integral representation of
II ''!:;k + III; ef. also Section 3. In order to derive this representation, some
known results in the theory of cardinal !fJ-splines are needed; these are
collected in Section 2. Finally, the asymptotic behaviour of 11.'1;k + III is
studied in Section 4. The following result is obtained.
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2 k 1
13k =-+4n L --2/'

nil (!./+n

and let y denote Euler's constant. It is shown that

(k ---> (0),

as !Jk ---> 00 (k --->(0). If the sequence (!Jk) converges then it is proved that
11.CJ;.k + ,II converges as well.

2. PRELIMINARIES

Let the polynomial P2k +, be defined by

where :::E C
For all ::: E C with P2k + 1(:::) # °and for all t E IR the function ljJ(z, t) is

then defined by

(2.2)

where P2k + I is given in Section 1, and where C is any contour in the com­
plex plane surrounding the zeros of P2k + I but excluding the zeros of
(1-+::: ~ e;.

In the sequel the following properties of 1jJ(:::, f) are needed; they are con­
tained in ter Morsche [6] as well as in Michelli [4], where, apart from a
normalisation factor, ljJ(z, t) is also used.

One has

(a) 1 I ( a)i I:1 1jJ(:::, f)1 =::: 1 ljJ(z, t)
ct t~' ct I~()

ljJ(z,1-t)=z2kljJ(z ',t),

2k

ljJ(z, t) = L A)f) Zl,
i~()

the kernel of 2! 2k + 1,

(j = 0, 1,..., 2k ~ 1),

(t #0),

(2.3 )

(2.4 )

(2.5 )

(2.6 )

Apart from these relations the following property of ljJ(z, t) is of interest.
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LEMMA 1.2 (Michelli [4]). If z < 0 the function t t---> ljJ(z, t) has
precisely one zero in (0, I]. Furthermore, if t E [0, 1) then the polynomial
z t---> ljJ(z, t) has only real zeros; these zeros are negative and simple.

The polynomial zt--->ljJ(z, t) is usually called the exponential 2­
polynomial, and in case C(I = C(2 = ... = Ct. k = 0 it is the well-known
Euler-Frobenius polynomial of degree at most 2k (cf. ter Morsche [6,
p. 62]). From (2.4) it follows that ljJ(z, I) = zljJ(z, 0). Therefore, by
Lemma 2.1, ljJ(z, I) has 2k - I negative simple zeros and, in addition, z = 0
is also a zero.

Let the zeros of z t---> ljJ(z, t) (t E (0, 1]) be denoted by )'1 (t ), ..., A2k(t) with

In Schoenberg [8] it is shown that the functions t t---> Ai ( t) (i = 1,... , 2k) are
increasing on (0, 1], satisfying the inequalities

Ai .. I(I) < )'i( t 1) < ).,( t 2) < Ai(1):( 0,

where 0<t 1 <t2 < I and, by definition, )'0(1)= -00. (2.7)

In the polynomial case, i.e., the case C( I = C(2 = ... = C(k = 0, the inequalities
(2.7) are already contained in ter Morsche [5].

In view of (2.5) the zeros of ljJ(z, ~) are ordered as

(i = 0, I,..., k).

According to ter Morsche [6, p. 68] the relation

~ (1) ~
j ~o A j 2" s(fl + j + t) = j ~o Ai t) Y J1 + j

(O:(t<l,fl=O, ±l,... )

(2.8 )

(2.9)

holds for all functions s E S2k + 1 satisfying (1.2); here the functions A i are
given by (2.6).

Relation (2.9) may be considered as a linear difference equation for the
unknown sequence (S(fl + t)):~ J having ljJ(z,~) as its characteristic
polynomial.

We know, however, that the ljJ(z, ~) is a polynomial of degree 2k with 2k
distinct negative zeros. Since, in view of (2.8), ljJ( - 1, ~) # 0, the polynomial
ljJ(z, ~) has no zeros on the unit circle in the complex plane, and therefore
Lemma 3.4.1 of ter Morsche [6, p. 74] may be applied to (2.9). This yields
the following result.
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LEMMA 2.1. Let (Yv)'x- x be a bounded sequence o{ complex numbers.
Then a unique bounded function s E S2k + 1 exists satisfying (1.2). Moreover,
this interpolating function s can be written in the form

'-f_

s(j1 + t) = L wilt) Y/It-/ (O:::;t<I,j1=O, ±I,... ) (2.10)

where wi(t) is given by the contour integral

Wi(t)=_I." t/J(z,t) d~
2m 11:1 1 zi+ It/J(Z,~) ~

(j=o, ± I, ±2,... ). (2.11 )

3. THE LEBESGUE FUNCTION AND AN

INTEGRAL REPRESENTATION OF IIY';k + 111

An application of formula (2.10) to the particular sequence (Y .. )= (6".0)
yields the fundamental solution L 2k + 1 as introduced in Section I. In view
of Lemma 2.1 one has

(o:::;t:::; 1,j1=O, ±I, ±2,... ).

(3.1 )

Using the residue theorem and (2.8), we obtain the representation

(O:::;t<I,j1= -I, -2, ... ),

(3.2)

here t/J: denotes the partial derivative of t/J(z, t) with respect to z. It follows
from (2.7) that

Consequently,

(~< t:::; I),

(t = ~),

(O:::;t<~). (3.3 )

(O:::;t<I,j1= -I, -2, ... ). (3.4 )

Since, by Lemma 2.1, the function L2I. t 1 is uniquely determined, one has

( - CfJ < t <XJ ). (3.5)
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(0<t~I,f.1=1,2, ... ). (3.6)

Taking f.1 = °and applying the residue theorem, we obtain

(O~ t< I). (3.7)

From (2.6) it follows that IjJ(O,t)1jJ 1(0,~»0 (tE[O, I)). Using this and
formulae (2.8), (3.3) we conclude that L 2k + 1(t) > °(t E [~, I)). Hence, in
view of (3.5),

sgn(L 2k + l (t))= I (0< t < I). (3.8 )

The fundamental solution L 2k + I thus changes sign at the points v + ~

(v = ±I, ±2, ... ), and these points are the only zeros of L 2k + 1 •

Therefore, on the interval [ -~, ~] the Lebesgue function E2k + I as given
by (1.5) coincides with the function I 2k + I defined by (1.6). Having
established this, our next goal is to show that 11!E2k + 111 = Ilk + 1(0) holds.
To this end we introduce the function L~n I (n EN), being the unique
bounded cardinal fE-spline in S2k + 1 interpolating the periodic sequence

y~fll = (- I )' (v = 0, I,..., 2n),

(v=O, ±I, ±2,... ).
(3.9 )

We emphasize that y~fll = y[fl} (v E Z). Consequently, the unicity of L~Z~ 1

implies that L~Z~ 1 is an even and periodic function with period 2n + I.
Since (cf. (1.7))

(v = - 2n, - 2n + I,..., 2n)

one has

lim L~ZL(t)=I2k+,(t),
n-..x

uniformly on every compact interval of [It Therefore (1.8) will be
established if it is shown that

L~;:~ 1(0) = max L~;:L(t).
o~ I ~ )/2

(3.10)

This assertion may be proved as follows. Since L~Z~ 1 is an even function
having at least 2n zeros in (~, 2n + !), its derivative L;£'2 1 has at least 2n - I
zeros in (!' 2n + ~), where, in addition,
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In order to prove that these zeros are the only zeros of L~~/lJ 1 on
[0, 2n + I], we use a generalized version of Rolle's theorem (cf. ter
Morsche [6, Lemma 1.4.11]). Also taking into account that the functions
involved, together with their (2k - I )st derivatives, are periodic with period
2n + 1, and the fact that

(D - 0I)(D2 -'l.k + II)'" (D 2
- 'l.1I) L~~/l) 1

has at most 2n sign changes in (0, 2n + 1), implies that L~~/l) I has at most
2n - 1 zeros in (0, 2n + 1), it follows that L~~n~ 1 has precisely 2n - 1 zeros
in (0, 2n + 1), all of which are contained in the subinterval (1, 2n + !l-

In view of L~Z~I(v+!)=(-lr (v=0,1,2,00.,2n) we obtain that
L~~n~I(t)::;;O in (0, n Hence (3.10) holds, which implies that IIY~k jill =
l2k+I(0).

An integral representation of 11.'lik + III is now obtained as follows. We
recall (cf. (1.6), (1.7)) that L2k + 1 is the unique bounded cardinal 2'-spline
interpolating the sequence Uvl. Formula (2.10) combined with (2.11) yields

where I; is chosen so small that rj;( z, !) has no zeros in the ring I -- 2" <
Izi < I + 2e. Consequently,

rj;(z,O) d-
(I+z)rj;(z,!) -

rj;~z, 0)_ I dz)'
(1+~)rj;(_'2) /

It easily follows from (2.4) and (2.5) that rj;( - I, 0) = 0. Hence, by (1.8), we
obtain an integral representation of the form

(3.11 )

This formula will now be used to study the asymptotic behaviour of
IIYik + III· With respect to the polynomial case, the contour integral
representation (3.11) was derived by G. Meinardus and G. Merz [3], who
studied the norm of some periodic spline interpolation operators.
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4. THE ASYMPTOTIC BEHAVIOUR OF II/I'2k + 1 II

We first observe that the sum of the residues of the function

239

is zero in case 0 ~ t ~ I as can be shown rather easily. Consequently, if
qJ ,,",0 (mod 2n), (2.2) yields

Recalling that 0 ~ a I ~:X2 ~ ... ~:Xk (cf. (2.1)), we define the polynomial
q2k+1 by

Since

one has

Substituting z = e'l" - r) in (3.11), we then obtain

Now let U,;.k (m = 0, I, ... ) be define by

U;;k( r) = q2k 1+ 1 ((2m + 1) n - r) ± qik 1+ 1(( 2m + 1) n + r)

One easily verifies that

x x

L q2k l+I((2m+ l)n-r)= L um.k(r),
n/= -x m=O

X ex

L (-I)/IIqik l+I((2m+l)n-r)= L (-I)/IIu';;.k(r).
nl =0
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Define the functions R: ' R;, I, and v, on [0, n] by

11/ I

,
R, (r)=q2', dn-r) L u",,(r), (4.2)

In 1

In view of (4.1 ) we then have

(4.3)

Let the increasing sequence ((U,) ( be defined by

,
uh=L(Ct

j
+1j I.

j~ 1

(4.4 )

From now on we distinguish between two cases, i.e.,

lim (U,=X
k-.... of

and lim w, <x.
k ---.. f

I. lim, ~ 0 (U, = CfJ.

We first give a couple of assertions concerning the behaviour of the
functions urn., and u;;,., as k -> x. Their verification involves staightforward,
but rather tedious, computations, which are omitted here. The two
relations are: a positive constant c exists such that for all mEN and all
rE[O,n]

q2'cl(n-r)Urn.,(r)=rm 2(O(e 'U',)

q2k+ 1(n ~ r) u,:,.,( r) = m\('(e "')!)
(k -> x) (4.5 )

uniformly in m and r. From (4.2) and (4.5) it immediately follows that

(4.6)(k -> x)
R, (r) = rC"(e ,OJ,)

R: (r ) = (( (e ,OJ,)

uniformly in r. Since in view of (4.2) one has v,( r) ~°on [0, n], it follows
from (4.3) and (4.6) that

I fn I ~v,(r) dr
11,'1';'+111=- 1+' () . (./2)(I+(((e 'W'))+(((e 'W,)

not, r Sin ri

(4.7)
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as k -4 x. In order to analyze (4.7), it is convenient to write [Jk in the form

L (rr-r) k ('Y. +(rr-r)C)Jl'k(r)=exp In -- + I In / o'

rr+r j ]'Y./+(rr+r)-

Hence,

We observe that 0 < r < rr implies

0:(2rrr(C(j+rr c+rC) ] :(2rrr(rrc+rC) I < I.

An application of the Taylor expansion

(
I _ () I (ci I 1

In - = -2 I--
I + ( j_() 2/ + I

now yields

(0:( r < rr), (4.8 )

wherc

2 k 4rr
gk(r)=-+ I ---c;,-----;­

rr j~l 'Y./+rrC+rC'

(

Y ci 1 r ci C k f. ( 2rr )CI+ I r CI -- 2
)

hk(r)=2 I rr --+ I I C C --'.
I~ ] 2/ + I j I I~ I C( j + rr + r 2/ + I

Apparently, the function gk satisfies on [0, rr) the inequalities

k 4rr k 4rr 2
gk(r» I ' ,~ I ,~-(jh·

/_I'Y./+rr-+r /~1'Y./+2rr- rr

Since

MO 4:1 3-4

(4.9)

(4.10)
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one has (cf. (4.9))
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0:(; hk (r ) :(; g( r) + (J) k h( r)

where the functions g and h arc given by

(O:(;r<n), 14.11 )

g(r)=2±(~)211Ir21 2,
I~ I n 21 + I

, 1 (. 2nr )21
h(r)=4n I -- -'--7

1 - I 21 + I n- + r

(4.12)

Obviously, g and h are positive on [0, n) and, moreover, g( r) --->X and
h(r)---> 00 as r--->n. Let

where

,rr l-e rg(ir) clr

I 2 = L 1+ t'"r) sin(r/2)

Using (4.10), the inequality 1- c f:(; 2t(t + I) I (t ~ 0), and the obser­
vation that

(k ---> XJ),

uniformly on [0, n), we may conclude that

Hence

In a similar way one can prove that

(k --->%). 14.13 )

(4.14)
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In view of (4.7) this leads to

On account of (4.9) the function gk may be written in the form

(O~T<n), (4.16 )

where

(4.17)

and

(4.18)

We observe that positive constants ('I and ('2 exist such that ('lwk~/h~

('2Uh (kE N). Therefore (qw k 2) may be replaced by (0(fJk 2), and vice versa.
From (4.18) it easily follows that

(k = 1,2,... ; 0 ~ T < n). (4.19)

Now, let

where

dT

sin(TI2)'

Ihr(l_er1rdr))

---I +e rgdr)

'n 1 - ell" dT
12 = jo 1+ e rgdr) sin(TI2)'

Using (4,19) together with the inequality el - 1~ tel (t ~ 0), we conclude
that
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as k --.x,. Similarly one has

~n 1--e Ii" dr
J 0 = I Ii' + (r (/l k 2)

- -0 J+e "sm(r/2)

These relations for J I and J 2 yield (cf. (4.15))

I ,,, I - eli" dr
IIYSkt III =- J 1+' Ii,,· ( I?) (I +(I(err 0 ( sm r;_

(k --.x. ).

The integral in the right-hand side of (4.20) can be written as follows:

,,, I - eli, [ dr

L1+eli" sin(Tj2)

'IT I - e /1, r 2 'r I - ell,! (' 1 2=t I+e IhrrdT+L I+e Ii" sin(rj2)-~)dT

'IT 1- e llir 2 ," (1 2")
= , /ik' dT + I . ( '2) - - dT + (r (/i k 2).

"0 1+ e r '0 sm TI r.

The second integral can be evaluated quite easily; in fact

'IT (I )\I . . - :) dT = 4 In 2 - 2 In rr.
'0 sm(TI2) r

With respect to the first integral one has

,'IT 1 - e lik'dT -li,n I - e r dT

LI + e lik' -; = L I + e [-;

I .'
=In(/hrr)-- ,

2 "0

In r
h J ;2 dT + (I (e d,u,),

cos -(T; )

where d is a positive constant.
Using formula (4.371 )(3) in Gradshteyn and Ryzhik [I, p.580]. we

obtain

., In T

I h' 2 dT = 2( In rr - In 2 - l' l,
'0 cos "(TI )

where )' denotes Euler's constant. We thus arrive at the following theorem.
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THEOREM 4.1. IlIh = 21n + 4n I; 1 ((.(/ + n 2
) I ~ 00 as k ~ ex, then

(k ~oo). (4.21 )

Having dealt with OJ, ~ Cf.; as k ~ u:.c, we now consider the case that the
sequence (OJ,) is convergent.

II. lim, ~ f Uh < eX;.

The convergence of the sequence (OJ,) implies that limj~ '" (.(j =000, so a
positive integer ko exists such that (.(j> 0 for j ~ ko. The polynomial q2, + I'

introduced at the beginning of this section, may therefore be written in the
form

(k ~ko),

where

Since I/~ '0 (.(j I is finite, the product n;~ '0 (l + Z2('(j 1) converges
uniformly in z on every bounded set of iC. As a consequence its limit
function, which we denote by q, is a holomorphic function. Taking into
account (4.1) we obtain

THEOREM 4.2. IlI7~ 1((.(/+ 1) 1 <00 then

(4.22)

li'here
y

q(z)= n (I +Z2(.(j I).
/~ '0

Finally, we examine a few particular cases.

(a) The polynomial case:'J.
j

= 0 (j = 1,2,... ). Since f3, =
n 1(2 + 4k) ~x:, Theorem 4.1 may be applied. A simple computation
yields

" 2 ( 32)). II!Y~, + III = - In k + In 0" + (I(k )
n n-

(k ~ CJJ),

which is in agreement with results obtained by Meinardus [2] and
Richards [7].
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(b) The hyperholic case: ell = / (j = I, 2, ... ). Obviously
Lt 1 (Cl j + I) 1 <x, and thus Theorem 4.2 may be applied. Using the
well-known relation

sinh(n: )

n

we conclude from (4.22) that

. (_I fnL';;~
hm 11'~k I 1 II - - x

1\_3. IT 0 L n;=

rl (I + ::)' .
I 1· )

x sinh 1(n((2m+ I)n-c)) dc

f (-I )m(n((2m + I) n - c)) sin(c/2)'

A numerical computation of the integral yields

lim IIY~k+lll~2.1314.
k ---"-J
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